Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis.

نویسندگان

  • Elena Loreti
  • Giovanni Povero
  • Giacomo Novi
  • Cinzia Solfanelli
  • Amedeo Alpi
  • Pierdomenico Perata
چکیده

Anthocyanins are secondary metabolites, which play an important role in the physiology of plants. Both sucrose and hormones regulate anthocyanin synthesis. Here, the interplay between sucrose and plant hormones was investigated in the expression of sucrose-regulated genes coding for anthocyanin biosynthetic enzymes in Arabidopsis seedlings. The expression pattern of 14 genes involved in the anthocyanin biosynthetic pathway, including two transcription factors (PAP1, PAP2), was analysed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) in Arabidopsis seedlings treated with sucrose and plant hormones. Sucrose-induction of the anthocyanin synthesis pathway was repressed by the addition of gibberellic acid (GA) whereas jasmonate (JA) and abscisic acid (ABA) had a synergic effect with sucrose. The gai mutant was less sensitive to GA-dependent repression of dihydroflavonol reductase. This would seem to prove that GAI signalling is involved in the crosstalk between sucrose and GA in wild-type Arabidopsis seedlings. Conversely, the inductive effect of sucrose was not strictly ABA mediated. Sucrose induction of anthocyanin genes required the COI1 gene, but not JAR1, which suggests a possible convergence of the jasmonate- and sucrose-signalling pathways. The results suggest the existence of a crosstalk between the sucrose and hormone signalling pathways in the regulation of the anthocyanin biosynthetic pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis plastid-signalling mutant gun1 (genomes uncoupled1) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development

Developing seedlings of the Arabidopsis gun1 (genomes uncoupled1) mutant, which is defective in retrograde plastid-to-nucleus signalling, show several previously unrecognized mutant phenotypes. gun1 seedlings accumulated less anthocyanin than wild-type seedlings when grown in the presence of 2% (w/v) sucrose, due to lower amounts of transcripts of early anthocyanin biosynthesis genes in gun1. N...

متن کامل

The Arabidopsis E3 SUMO Ligase SIZ1 Regulates Plant Growth and Drought Responses W

Posttranslational modifications of proteins by small ubiquitin-like modifiers (SUMOs) regulate protein degradation and localization, protein–protein interaction, and transcriptional activity. SUMO E3 ligase functions are executed by SIZ1/SIZ2 and Mms21 in yeast, the PIAS family members RanBP2, and Pc2 in human. The Arabidopsis thaliana genome contains only one gene, SIZ1, that is orthologous to...

متن کامل

The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses.

Posttranslational modifications of proteins by small ubiquitin-like modifiers (SUMOs) regulate protein degradation and localization, protein-protein interaction, and transcriptional activity. SUMO E3 ligase functions are executed by SIZ1/SIZ2 and Mms21 in yeast, the PIAS family members RanBP2, and Pc2 in human. The Arabidopsis thaliana genome contains only one gene, SIZ1, that is orthologous to...

متن کامل

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 179 4  شماره 

صفحات  -

تاریخ انتشار 2008